A Hybridized Weak Galerkin Finite Element Method for the Biharmonic Equation

نویسندگان

  • CHUNMEI WANG
  • JUNPING WANG
چکیده

This paper presents a hybridized formulation for the weak Galerkin finite element method for the biharmonic equation based on the discrete weak Hessian recently proposed by the authors. The hybridized weak Galerkin scheme is based on the use of a Lagrange multiplier defined on the element interfaces. The Lagrange multiplier is verified to provide a numerical approximation for certain derivatives of the exact solution. An error estimate of optimal order is established for the numerical approximations arising from the hybridized weak Galerkin finite element method. The paper also derives a computational algorithm (Schur complement) by eliminating all the unknowns associated with the interior variables on each element, yielding a significantly reduced system of linear equations for unknowns on the element interfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media

In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...

متن کامل

A Weak Galerkin Mixed Finite Element Method for Biharmonic Equations

This article introduces and analyzes a weak Galerkin mixed finite element method for solving the biharmonic equation. The weak Galerkin method, first introduced by two of the authors (J. Wang and X. Ye) in [52] for second order elliptic problems, is based on the concept of discrete weak gradients. The method uses completely discrete finite element functions and, using certain discrete spaces an...

متن کامل

A C-weak Galerkin Finite Element Method for the Biharmonic Equation

Abstract. A C0-weak Galerkin (WG) method is introduced and analyzed for solving the biharmonic equation in 2D and 3D. A weak Laplacian is defined for C0 functions in the new weak formulation. This WG finite element formulation is symmetric, positive definite and parameter free. Optimal order error estimates are established in both a discrete H2 norm and the L2 norm, for the weak Galerkin finite...

متن کامل

Effective implementation of the weak Galerkin finite element methods for the biharmonic equation

The weak Galerkin (WG) methods have been introduced in [11, 16] for solving the biharmonic equation. The purpose of this paper is to develop an algorithm to implement the WG methods effectively. This can be achieved by eliminating local unknowns to obtain a global system with significant reduction of size. In fact this reduced global system is equivalent to the Schur complements of the WG metho...

متن کامل

Convergence Analysis of a Quadrature Finite Element Galerkin Scheme for a Biharmonic Problem

A quadrature finite element Galerkin scheme for a Dirichlet boundary value problem for the biharmonic equation is analyzed for a solution existence, uniqueness, and convergence. Conforming finite element space of Bogner-Fox-Schmit rectangles and an integration rule based on the two-point Gaussian quadrature are used to formulate the discrete problem. An H2-norm error estimate is obtained for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015